Label Representations in Modeling Classification as Text Generation

Xinyi Chen1, Jingxian Xu1, Alex Wang2
1New York University Shanghai, 2New York University


Abstract

Several recent state-of-the-art transfer learning methods model classification tasks as text generation, where labels are represented as strings for the model to generate. We investigate the effect that the choice of strings used to represent labels has on how effectively the model learns the task. For four standard text classification tasks, we design a diverse set of possible string representations for labels, ranging from canonical label definitions to random strings. We experiment with T5 on these tasks, varying the label representations as well as the amount of training data. We find that, in the low data setting, label representation impacts task performance on some tasks, with task-related labels being most effective, but fails to have an impact on others. In the full data setting, our results are largely negative: Different label representations do not affect overall task performance.