Multi-task Learning for Automated Essay Scoring with Sentiment Analysis

Panitan Muangkammuen and Fumiyo Fukumoto
University of Yamanashi


Abstract

Automated Essay Scoring (AES) is a process that aims to alleviate the workload of graders and improve the feedback cycle in educational systems. Multi-task learning models, one of the deep learning techniques that have recently been applied to many NLP tasks, demonstrate the vast potential for AES. In this work, we present an approach for combining two tasks, sentiment analysis, and AES by utilizing multi-task learning. The model is based on a hierarchical neural network that learns to predict a holistic score at the document-level along with sentiment classes at the word-level and sentence-level. The sentiment features extracted from opinion expressions can enhance a vanilla holistic essay scoring, which mainly focuses on lexicon and text semantics. Our approach demonstrates that sentiment features are beneficial for some essay prompts, and the performance is competitive to other deep learning models on the Automated StudentAssessment Prize (ASAP) benchmark. TheQuadratic Weighted Kappa (QWK) is used to measure the agreement between the human grader’s score and the model’s prediction. Ourmodel produces a QWK of 0.763.