User-generated contents' score-based prediction and item recommendation has become an inseparable part of the online recommendation systems. The ratings allow people to express their opinions and may affect the market value of items and consumer confidence in e-commerce decisions. A major problem with the models designed for user review prediction is that they unknowingly neglect the rating bias occurring due to personal user bias preferences. We propose a tendency-based approach that models the user and item tendency for score prediction along with text review analysis with respect to ratings.